

Proprietary database terms have been anonymized

1. A mask was created for all NDCs Associated with Dimethyl Fumarate 240mg and classified as

Brand or Generic and named NDC_MASK

SELECT Product_Name,
 case
 when Brand_Code = 'Brand'
 else 'Generic' end as Brand_Generic
 ,right('00000' + NDC,11) as NDC
 FROM [dbo].[Definitions]
 where GPI in (‘TEFIDERA’)

2. The mask was joined to the Medicare 2021 Quarter 3 Pricing table (the latest available when we

began this research) to isolate all associated NDCs, Contracts, and reported prices. The data was

limited to 30-day supply and named PRICING_FILE.

SELECT b.Product_Name,
 b.Brand_Generic,
 a.*
 from [Medicare_pricing_file_2021_Q3] a
 join NDC_MASK b
 on a.NDC=b.NDC
 where DAYS_SUPPLY = 30

3. The query was joined to the Medicare 2021 Quarter 3 plan information table on contract, plan

ID, and Segment ID

SELECT a.*
 ,FORMULARY_ID
 from PRICING_FILE a
 join [Medicare_plan_information_2021_Q3] b
 on a.CONTRACT_ID=b.CONTRACT_ID and a.PLAN_ID=b.PLAN_ID and a.SEGMENT_ID=b.SEGMENT_ID

4. The table was then joined to the basic drug formulary table by contract ID, plan ID, segment ID

and the tier values added. The table was named TIER

SELECT a.*
 ,TIER_LEVEL_VALUE
 from PLAN_INFORMATION a
 JOIN [Medicare_basic_drugs_formulary_2021Q3] b
 on a.FORMULARY_ID = b.FORMULARY_ID and a.NDC=b.NDC

5. The TIER table was aggregated by Contract_Id to get average price and tier level per contract

and named BRAND_GENERIC

Proprietary database terms have been anonymized

SELECT
 Product_Name
 ,Brand_Generic
 ,CONTRACT_ID
 ,round(AVG(convert(float,TIER_LEVEL_VALUE)),0) TIER_LEVEL_VALUE
 ,round(AVG(convert(float,UNIT_COST)),2) UNIT_COST
from TIER
Group by
 Product_Name
 ,Brand_Generic
 ,CONTRACT_ID

6. Brand and Generic were separated into separate tables with the respected table names of

‘Brand’ and ‘Generic’

BRAND as (
SELECT Brand_Generic
,CONTRACT_ID
,TIER_LEVEL_VALUE
,UNIT_COST BRAND_UNIT_COST
FROM BRAND_GENERIC
where BRAND_GENERIC = 'Brand'

GENERIC as(
SELECT Brand_Generic
,CONTRACT_ID
,TIER_LEVEL_VALUE
,UNIT_COST GEN_UNIT_COST
FROM BRAND_GENERIC
Where BRAND_GENERIC = 'Generic'

7. The Brand and Generic tables were joined so that all data for a single contract was on the same

line. A case statement was created to identify if the contract offered Generic, Brand, or Both

coverage. The table was named MERGED

SELECT
CASE
 when a.CONTRACT_ID is not null then a.CONTRACT_ID
 else b.CONTRACT_ID end as CONTRACT_ID
,a.TIER_LEVEL_VALUE as Brand_Tier
,BRAND_UNIT_COST
,b.TIER_LEVEL_VALUE as Gen_Tier
,GEN_UNIT_COST
,CASE

Proprietary database terms have been anonymized

 when a.Brand_Generic is null then 'Generic'
 when b.Brand_Generic is null then 'Brand'
 else 'Both' end Brand_Generic
FROM BRAND a
FULL JOIN GENERIC b
on a.CONTRACT_ID=b.CONTRACT_ID

8. The Merged table was joined to August Part D enrollment data (the latest available when we

added this query to our research) to identify the number of beneficiaries serviced by each

contract and named the Lives Table.

Select
a.*,
Plan_Type
,Organization_Marketing_Name
,Parent_Organization
,PartD Lives
,sum(convert(int,PartD)) OVER(PARTITION BY Parent_Organization) as
'Parent_Total_Org_Lives'
from MERGED a
join [Medicare_Enrollment_Plan_Aug_2021] b
on a.CONTRACT_ID = b.Contract_Number
where PartD <> '*'

9. A case statement was created from the Lives table to group the Parent Organizations by size

Select *
,case
 When Parent_Total_Org_Lives <= 100000 then 'Small'
 When Parent_Total_Org_Lives <= 1000000 and Parent_Total_Org_Lives>100000 then
'Medium'
 Else 'Large' end 'size'
from Lives
order by Parent_Organization

10. The table was saved as ‘TF_Q3_2021_ANALYSIS.csv’)

11. A DataFrame was created from the TF_Q3_2021_ANALYSIS.csv

#import files

file = pd.read_csv('TF_Q3_2021_ANALYSIS.csv')

#create DataFrame

df = pd.DataFrame(file)

Proprietary database terms have been anonymized

12. A column was created to determine lowest price

df['lowest_price_Q3'] = np.where(df['GEN_UNIT_COST'] > 1 ,df['GEN_UNIT_COST']

,df['BRAND_UNIT_COST'])

13. Determine the percent and count of contract that mandate brand/generic/choice (fig 5)

#group by Brand_Generic Catecorgy and sum count

brand_generic = df.groupby('Brand_Generic')['Lives'].sum()

#reindex

brand_generic = brand_generic[['Brand','Both','Generic']].reset_index()

#create percent column

brand_generic['percent'] = round(brand_generic.Lives/brand_generic.Lives.sum()*100,1)

14. Determine number of Lives by brand/generic/choice (fig 6)

lives_by_mandate = df.groupby(['size','Brand_Generic'])[['Lives']].sum()

lives_by_mandate=lives_by_mandate.reset_index()

lives_by_mandate=lives_by_mandate.sort_values(by ='Brand_Generic', ascending=False)

15. Separate by organizational size

small = (lives_by_mandate.loc[lives_by_mandate['size'] == 'Small'][['Lives']])

small = list(small['Lives'])

medium = (lives_by_mandate.loc[lives_by_mandate['size'] == 'Medium'][['Lives']])

medium = list(medium['Lives'])

large = (lives_by_mandate.loc[lives_by_mandate['size'] == 'Large'][['Lives']])

large = list(large['Lives']

16. Create DataFrame for Brand Tier data and charting (fig 6)

brand_tier = df.groupby(['size','Brand_Tier'])[['Lives']].sum().reset_index()

Proprietary database terms have been anonymized

17. Create DataFrame for Generic Tier Data and charting (fig 10)

gen_tier = df.groupby(['size','Gen_Tier'])[['Lives']].sum().reset_index()

18. A DataFrame was created to group organizations by size and lives for charting (fig 7)

size_org = org_size.groupby('size').agg({'Parent_Organization':'count','Lives':'sum'})

size_org = size_org.reset_index()

19. A DataFrame was created for a violin plot and sorted by organizational size (fig 9)

def sorter(x):

 if x == 'Small':

 return 1

 elif x == 'Medium':

 return 2

 else:

 return 3

violin = df

violin['sort'] = violin['size'].apply(sorter)

violin = violin.sort_values(by = 'sort')

20. A DataFrame was created to chart Large Organization data (fig 8)

Large = df.loc[df['size'] == 'Large']

Large = Large.groupby(['Brand_Generic','Parent_Organization'])['Lives'].sum()

Large = Large.reset_index()

21. A DataFrame was created for a ski slope chart

ski_slope = df[['CONTRACT_ID','lowest_price_Q3','Lives','size','Brand_Generic']]

ski_slope = ski_slope.sort_values(by='lowest_price_Q3').reset_index(drop = True)

Proprietary database terms have been anonymized

ski_slope['lives_sum'] = ski_slope['Lives'].cumsum()

ski_slope['percent'] = ski_slope.lives_sum/ski_slope.Lives.sum()

